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About Evaluation of Many.Center Molecular Integrals* 

By 

YVES G. SMEYERS 

Studies of truncated expansions of Slater s-orbitals, in terms of associated Laguerre func- 
tions and spherical harmonics at another center, are carried out. The possibility of using such 
an expansion to calculate many-center molecular integrals is considered. The procedure is 
applied to solve three-center nuclear attraction integrals; it is shown that in some cases this 
expansion can provide relatively good results. 

On 6tudie des d6veloppements tronqu6s d'orbitales s de Slater, el1 s6rie de fonctions 
assocides de Laguerre et d'harmoniques sph6riques centr~s en un autre point. On examine les 
possibilit~s d'employer ee genre de d6veloppement dans le calcul des int6grales mol6culaires 
polycentriques. On applique le proc@d6 ~ la r6solution des int6grales trieentri~ues d'attraction 
nuel~aire et l 'on montre que darts certains cas cette expansion peut conduire ~ des r@sultats 
relativement bons. 

Slater-s-Orbitale werden an einem anderen Zentrum in Reihen yon Produkten aus Kugel- 
funktionen und zugeordneten Laguerreschen Funktionen entwickelt. Untersucht wird die Kon- 
vergenz der Reihen und ihre Eignung zur Berechnung yon Mehrzentren-, insbesondere yon 
Dreizentren-Kernwechselwirkungs-Integralen. Die Ergebnisse sind zum Teil recht gut. 

1. Introduction 

E v a l u a t i o n  of  m a n y - c e n t e r  in tegra ls  r emains  one of  the  m a j o r  difficulties in 
the  a p p r o x i m a t i o n  of  wavefunet ions  of po lya tomic  sys tems b y  the  L.C.A.O. 
methods .  H i the r to ,  few papers  [1, 2] have  been concerned wi th  th is  p rob lem and  
a l though much  i m p r o v e m e n t s  have  been made  in  las t  years  b y  the  use of  big 
compute rs  [10, 13], an efficient general  p rog ram is not  y e t  ava i lab le  today .  

A w a y  to  solve this  p rob lem is to  e x p a n d  the  molecu la r  wavefune t ion  abou t  a 
single center.  This  procedure  has  p roduced  sa t i s fac to ry  resul ts  in the  s tudies  on 
ve ry  symmet r i ca l  molecules such as H 2 and  A H n - t y p e  molecules [8, 12]. However ,  
such funct ions  are no t  able to  represent  p rope r ly  the  electronic charge d is t r ibu-  
t ion  a round  the  off-center nuclei. F u r t h e r m o r e  t h e y  show a slow ra te  of  conver- 
gence and  the  i n t roduc t ion  of  high angular  m o m e n t u m  te rms  is required.  

The presen t  p a p e r  deals  in some w a y  wi th  bo th  problems.  I n  fact ,  one of the  
s imples t  p rocedures  to  compute  m a n y - c e n t e r  molecular  in tegra ls  is to  reduce t hem 
to a sum of  one- or two-cen te r  integrals ,  easier  to  calculate,  b y  expand ing  some 
orbi ta ls ,  occuring in them,  in series of  o r thonormal  funct ions  : 

Cf AJ = ~ ( f qZAj zB~ d~:) ZBi . (t)  

* A preliminary report of this work was read at the XI I .  meeting of the "Real Sociedad 
Espafiola de F/sica y Qulmica", Salamanca, June 1965. 
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Here A, B indicate the centers of the functions and i, ?' denote sets of quantum 
numbers. 

RUEOENBElCG, in an early paper [11], used this property to justify theoretically 
the well known Mulliken's approximation for the calculation of many-center  
integrals. ELISSON [4] later estimated three-center integrals of repulsion in such 
a way. Recently, P A ~  et al. [16] expanded a hydrogen is-orbital in spherical 
harmonics, with zeta function and with Slater-orbital radial factors. In  the second 
expansion, these authors employed Slater-orbitals, centered off the nucleus, with 
nonintegral principal quantum, numbers and ceofficients determinated by  mini- 
mization of energy. 

In  this paper we t ry  to study the expansion (t) and its possible use to evaluate 
many-center  integrals. In  a first approach only Slater type orbitals (ST0's) of 
s-symmetry are to be expanded; this procedure has been applied to compute 
three-center integrals of nuclear attraction. 

2. Choice of the Basis 

As basis for the expansion (I) we have employed an orthonormal set proposed 
by  SnULL and L6WDI~ [14], which is a complete orthonormal system : 

)/.l =- (~ + ~ + 1)! " n+~+l �9 Yp (0, ~) (2) 

where L 2z+2 (2zrB) are the associated Laguerre polynomials of order ( 2 / §  2), n + / + l  

Y~ (0, ~) are the ordinary spherical harmonics and i takes different values for 
every n, / ,  m combination. 

This set is entirely discrete and has the advantage of owning a common single 
exponent, which allows the ZBi to be written as a linear combination of ~Bk~rn 
Slater orbitMs, centered at the same point: 

XB~ ~ c~l'm~zm �9 
/ c = l + l  

The Slater normalized orbitals are defined as follows: 

(2z)k+ G r~_ 1 e-zrB y~  (0, q)) (3) ~fBklm - [(2/c) !]~/2 

From Eq. (2) and the definition of the Slater orbitals we have deduced the following 
formula for the coefficients c~Zm: 

c~lm = (_ l )~_/_  1 g ( n + i + l ) !  V ( ~ - - i - i } !  V(2/cii 
( ~ + 1 + I ) !  ( k - l - t ) !  ( n - ~ ) !  

which does not depend on the number m. On the other hand, since in this paper 
TAY is a s-orbital, there is no term in the series with m r 0, because the correspond- 
ing expansion coefficients .[qSdj ZB~ dr in Eq. (~) vanish. 

3. Calculation of the Expansion Coefficients 

Calculation of the remaining expansion coefficients ~Aj  ZB~ dr can now be 
carried out by  means of any of the common procedures to calculate overlap 
integrals between Slater orbitals. Using elliptical coordinates these integrals can 
readily be written in terms of the auxiliary integrals An and Bn [9]. Because of the 
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high number of integrals of that  type, it seems convenient to systemize that  
calculation. Therefore, we have deduced after LoFT~vs [5] a general equation, 
where the overlap integrals are expressed as functions of An and Bn and of the 
quantum numbers of the corresponding orbitals: 

~ .  (pBkZo dT = Nj Nk nj! (k - l) ! �9 

a = o D = o  c ~ o d = o  

In this expression one should retain only those terms where a + b is an even 
number. N i and N~ are the normalization constants of the radial parts of the 
corresponding STO's, R is the internuclear distance between their centers and 
C(~ a factor depending essentially on the number l, which has the form: 

a + b  

C(1) ( 2 / - a - b ) !  (a+b) ! l !  ( - 1 )  2 
ab 

For the computation of the Bn integrals we have chosen a development 
advanced by N m L ~  et al. [7], since the usual recurrence formula in some eases 
yields large errors. 

4. Properties of the Expans ion  

I f  ~VAi is a normalized wavefunction, we have : 

1 = ~  ~j ') /BidT . (4) 

Since the expansion must perforce be limited in practice, Eq. (4) can be used to 
provide insight into the rate of convergence obtained for a given number N of 
terms; thus we define: 

sN  =- ~ (fq~AiZ~,ctT) ~ �9 
In  the same way, inside each vectorial subspace with same number I we can define 
a Soot and a Slvl, since each subset of Laguerre functions of same order is by itself 
a complete orthonormal system in such a subspace. The value of that  S~z, 
depending only upon the ~AJ functions and the internuclear distance R, can be 
computed by exact methods. 

Now it must be noted that  the z exponent in the expansion (1) is an arbitrary 
parameter that  we may choose in such a manner that  the SN will be maximum. 
Moreover, there is no reason for this exponent to be the same in every subset of 
Laguerre functions, and we may thus assume different zz values for each S2vl to be 
maximum, that  is for S~l to tend toward Soot. 

An alternative way to check the convergence of the expansion would be the 
calculation of the multipole moments, which as is known are zero for a s-function. 
This way seems of interest because there are several approximations for many- 
center integrals [3, 6] based on preserving such moments. Next, nuclear attraction 
three-center integrals are calculated using the expansion procedure. The values of 
these will give a good measurement of the electronic density and can be used to 
verify the expansion properties at several space points. 
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5. Applications 
We have applied this method to the solution of nuclear attraction three-center 

integrals, which have the general form: 

f q)Aj q)Bh dv 
FC 

where ~VAj and ~sSh are two STO's with centers at A and B, re is the distance from 
the electron to a third point C. On substituting the B-centered expansion of 
orthonormal functions for CfAj, that  integral takes the form of a summation of 
two-center nuclear attraction integrals : 

Now we can write, as done above for the expansion coefficients, these two-center 
integrals as linear combinations of known integrals of Slater-orbitals. Because of 
substituting a Neumann's expansion for the re -1 operator, the nuclear attraction 
terms then have as factors the Legendre polynomials P~ (cos y), where y is the 

angle between the vectors BC and B A  and I the angular quantum number of the 
corresponding ZB~" 

The calculation process has been programmed for the IBM 7070 computer of the C.C.E. 
of the C.S.I.C., in Madrid. The program has no other limitations than the numericM ones. The 
number of terms is in practice limited only by the accumulation of errors. Therefore, we think 
it would be interesting to rewrite this program in double precision, so that a larger number of 
terms could be retained. 

6. Results and Discussion 
In  Tab. I are listed the values of Slvz and SN computed, as described above, 

expanding a is-orbital ~A3" with charge equal to unity and using 8 - - I  Laguerre 
polynomials of order 21 + 2 for I = 0, l, . . . ,  7. All the calculations were performed 
for four values of the distance R (0.7; 1.4; 2.0 and 2.5 a.u.). A change in the scale 
factor can provide a variation of the charge. I t  is seen that the convergence is 
more rapid for smaller R values, as to be expected. In  the same table are given the 
best values of zz. Also in Tab. i are presented the values of S~o z calculated by an 
exact method, the BAI~NETT-COULSON expansion. As it is seen, the convergence 
inside every subspace shows the same trend. 

The different contributions to the dipole moment of a B-centered expansion as 
functions of the quantity l, including that  of an equal positive charge placed at A, 
are tabulated in Tab. 2. As it is seen, the results approach asymptotically the 
correct value zero, except for a small residual error which appears clearly when 
R = 0.7 a.u. This error is due to the incompleteness of the basis used tbr the radial 
part. These results are comparable, however, with those obtained by PAR~ et al. 
[16] using the BA~STETT-CouLsoN expansion and, indeed, much better than those 
produced by the same authors using the Slater expansion with nonintegrM princi- 
pal quantum numbers. This fact is due to their having employed a single orbital 
(with one exception) for the radial part multiplying a spherieM harmonic. 

In  Tab. 3 and 4 are gathered some nuclear attraction many-center integrals of 
Slater ~s-orbitals with charge equal to unity and distances R = A B  = CB,  
computed by the method described, with the zz parameters given in Tab. t.. 

Tabulated in column 2 of Tab. 3 are evMuations of integrals where the attrac- 
tive center C coincides with the center A of the ~VAi orbital. These integrals, in fact 
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Table 2. Dipole moments, in Debye units, as/unctions o/ 
distance R, ]or an unnormalized truncated expansion 

1 R = 0.7a.u. R ~ 1.da.u. /t = 2.0a.u. R = 2.5a.u. 

0 t.77903 3.5571 5.0764 6.3316 
t 0A6596 0.9948 2.2100 3.4425 
2 0.01354 0.2152 0.7321 1.4432 
3 0.00i89 0.0508 0.2365 0.5661 
4 0.00064 0.0152 0.0839 0.2334 
5 0.00044 0.0064 0.0352 0.1070 
6 0.00038 0.0036 0.0173 0.0559 
7 0.00036 0.0026 0.0104 0.0348 

l i s t h e h i g h e s t  order o f the  Legendre polynomialre t~ned.  

Table 3. Nuclear two-center attraction integrals, in atomic units, as/unctions o/ 
distance R 

R By this Exact  l~atio between 
in a .u .  method value both results S~ 

0.7 0.84351 0.84419 0.99919 0.99997 
1.4 0.58998 0.59183 0.99687 0.99969 
2.0 0.40345 0.40600 0.99372 0.99866 
2.5 0.28453 0.28730 0.99036 0.99649 

Table 5. Values o/the last expansion term retained, as/unctions 
o/the distances A B  and CB, in atomic units/or linear 

arrangement 

CB[AB AB = 0.7 AB = 1.4 AB ~ 2.0 AB=2.5 

0.5 0.25 t0 -~ 0.13 10 -a 0.26 10 -3 0.38 10 -3 
t .0 0.14 t0  -3 0.53 t0 -a 0.79 10 -3 0.87 i0 -3 
1.5 0.10 10 -3 0.27 l0 -a 0.31 10 -3 0.27 10 -3 
2.0 0.33 t0 -a 0.71 t0 -4 0.65 10 -4 0.49 10 -a 

In  this case l = 8 and N = 1. 

t w o - c e n t e r  in tegra l s ,  can  eas i ly  be  ca l cu l a t ed  b y  classical  m e t h o d s  a n d  t h e i r  

co r rec t  v a l u e s  are  g i v e n  in  c o l u m n  3. I t  seems i n t e r e s t i n g  to  l ist  in  c o l u m n  4 t h e  

r a t ios  b e t w e e n  b o t h  resu l t s  a n d  in  c o l u m n  5 t h e  co r r e spond ing  SN values .  I t  is seen  

t h a t ,  in  th i s  case, t h e  c o n v e r g e n c e  o f  t h e  series (5) is n o t  so good  as to  be e x p e c t e d .  

One m a y  conf i rm t h e n  t h a t  t h e  r e p r e s e n t a t i o n  o f  t h e  e l ec t ron ic  d e n s i t y  g i v e n  b y  

t h e  e x p a n s i o n  is less s a t i s f a c t o r y  in  t h e  r eg ion  o f  p o i n t  A ( the cusp) t h a n  in  t h e  

r e m a i n i n g  space.  

I n  Tab .  4 are  g i v e n  t h e  va lues  o f  t h r e e - c e n t e r  in tegra l s  for  four  s igni f icant  posi-  

t i ons  o f  cen t e r  C (<): A B C = x =  90~ ~09 ~ 28 ' ;  t 20  ~ a n d  180~ Since  e x a c t  v a l u e s  

of  these  in t eg ra l s  are  lacking ,  we h a v e  c o m p u t e d  t h e i r  va lues  fo l lowing  t w o  w a y s  : 

t he  ~CAj e x p a n s i o n  a b o u t  p o i n t  B a n d  A - c e n t e r e d  e x p a n s i o n  o f  ~Ba. As  a m a t t e r  
of  fac t ,  b o t h  expans ions  m u s t  t e n d  to  t h e  s a m e  va lues .  L e t  us suppose  t h a t  b o t h  

resu l t s  a re  co r rec t  w h e n  t h e y  agree.  A v e r y  good  a g r e e m e n t ,  b e t t e r  t h a n  t o  be  

e x p e c t e d ,  is s h o w n  in  Tab .  4. 

Theoret. chim. Acta (Berl.) Vol. 4 32 
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To discuss these  results ,  let  us first look on the  th ree -cen te r  l inear  integrals ,  
centered a t  B, where y = t80  ~ Because P t  (cos y) mul t ip l ies  the  nuclear  a t t r ac t i ve  
terms,  according to  the  proper t ies  of  the  Legendre  po lynomia ls  the  expans ion  (5) 
becomes an  a l t e rnan t  series*. The m a x i m u m  error will be given a p p r o x i m a t e l y  b y  
the  las t  te rm.  The corresponding values,  for four  d is tances  A B  = CB, are l is ted 
in the  second row of  Tab.  5. Now, when y = 90 ~ the  expans ion  (5) is also an 
a l t e rnan t  series, b u t  i t s  convergence m u s t  be more  r ap id  because Pz (0) decreases 
wi th  1. On the  o ther  hand,  for y = 0 ~ P l  will a lways  be + t ,  and  therefore  the  
convergence will be slowest,  which is in agreement  wi th  the  resul ts  of  Tab.  3. 

F r o m  the  resul ts  on the  l inear  a r r angemen t  l i s ted  in Tab.  5, i t  m a y  be seen t h a t  
the  convergence Ml l  be be t t e r  when A B r  CB, pa r t i cu l a ry  when CB > AB.  This 
fact  po in ts  out  t h a t  the  t e rms  wi th  high angu la r  m o m e n t u m  are more  signifieans 
a t  the  po in ts  ly ing on a sphere centered a round  B and passing th rough  A, where 
indeed  the  m a x i m u m  electronic dens i ty  is to  be met .  This r e m a r k  also agrees wi th  
the  resul ts  of  Tab.  3. 

Expans ions  of  S la ter  2s-orbi ta ls  were also pe r fo rmed  in the  same way.  These 
show a s imilar  behav ior  and  no more  difficulties t h a n  those  of  i s - type .  

7. Conclusions 

I t  is seen t h a t  the  convergence of  an  expans ion  of  a Sla ter  s -orb i ta l  in  t e rms  of  
Laguer re  funct ions  and  spher ical  harmonies  abou t  an off-center is sa t i s fac to ry  
though  slow. Besides, th is  expans ion  seems to be a lmost  as good as one in t e rms  of  
ze ta  funct ions  (BA~ETT-CouLso~) .  These resul ts  confirm also t h a t  s ingle-center  
calculat ions  on molecules such as me thane  mus t  include higher  harmonics  in order  
to ob ta in  an  a p p r o x i m a t e l y  correct  e lect ron dens i ty  in  the  region of  the  protons .  

Fu r the rmore ,  i t  is seen t h a t  such an expans ion  yields  be t t e r  e lectronic densi t ies  
a t  cer ta in  space points .  W e  m a y  now conclude tha t ,  when one wan t s  to  eva lua te  
the  po ten t i a l  a t  those  po in ts  (nuclear  a t t r a c t i on  integrals)  or the  repuls ion due to  
an  electronic cloud cen te red  a round  t hem ( two-electron coulomb integrals)  th is  
expans ion  m a y  be used successfully in  the  eva lua t ion  of  the  th ree -cen te r  integrals .  
I n  the  cases of  three-  and  four-center  exchange in tegra ls  the  l a t t e r  conclusion 
seems to be less obvious.  I t  m a y  be no ted  t h a t  i t  seems less difficult  to  calcula te  b y  
th is  t r e a t e m e n t  precisely  the  mos t  usual  in tegra ls  in  s t ruc tu ra l  problems,  where 
e i ther  90 ~ N y __< t80  ~ or A B e  CB. I n  the  same way,  th is  expla ins  p a r t l y  also 
the  re la t ive  success of  the  MULLIX~ 'S  a p p r o x i m a t i o n  in  these  cases, as we have  
s t a t ed  elsewhere [15]. 

* We have verified that, in our case, the factors multiplying the Pt are always > 0. This 
fact agrees with the results of P ~  et al. [16], and can be explained as follows: Let us retain in 
our expansion the first Laguerre function of each order only, and optimize again the zz para- 
meters. Since/~ is not too large, our new expansion may be expected to remain approximately 
a good one. Then the factors multiplying the Pz become a product of two integrals of Slater- 
orbitals. Since ~0Aj and ~0B~, are s-orbitals and ZB~ now has no spherical node, it  may be easily 
seen  that both integrals must be positive. 
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